Regulation of renal Na-K-ATPase in the rat. Role of the natural mineralo- and glucocorticoid hormones.

نویسندگان

  • S K Mujais
  • M A Chekal
  • W J Jones
  • J P Hayslett
  • A I Katz
چکیده

Both mineralo- and glucocorticoids stimulate renal Na-K-ATPase, but their relative role in the regulation of the enzyme remains controversial. In this study we measured Na-K-ATPase activity in the cortical collecting tubule (CCT) of adrenalectomized rats replaced with either the native mineralocorticoid (aldosterone) or glucocorticoid (corticosterone) in doses calculated to yield previously determined physiologic concentrations of these hormones (5 ng X dl-1 and 5 micrograms X dl-1, respectively). This was achieved by continuous delivery of aldosterone (1 microgram X 100 g-1 X d-1) from an osmotic minipump or of corticosterone (2 pellets of 20 mg each), implanted subcutaneously either at adrenalectomy or 7 d later, when Na-K-ATPase activity reached its nadir. Adrenalectomized rats not receiving hormone replacement and adrenal-intact animals served as controls. The CCT was chosen because it contains the highest concentration of binding sites for both hormones. Na-K-ATPase activity declined 52% in the CCT of untreated adrenalectomized rats after 7 d, and remained unchanged thereafter. Physiologic replacement doses of aldosterone prevented this decline and restored the activity of the enzyme after it had been allowed to decrease maximally following adrenal ablation, whereas similar replacement of corticosterone was without effect. These observations suggest that under physiologic conditions Na-K-ATPase in the CCT, a probable target nephron segment of both hormones, is under mineralocorticoid rather than glucocorticoid control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

Effect of different levels of salinity on immunolocalization of Na+-K+ ATPase and Aquaporin 3 in kidney of common carp Cyprinus carpio

Cyprinus carpio is a stenohaline species but can tolerate some ranges of changes in environmental salinities, so histomorphological methods and Na+-K+ ATPase and Aquaporin 3 immunohistochemistry were performed on common carp kidney as an osmoregulatory organ in experimental groups and control in order to investigate their possible roles during salinity challenge. Five groups of fish (n=25) with...

متن کامل

The role of Na+-K+-ATPase in the basic and rate-dependent properties of isolated perfused rabbit Atrioventricular Node

Introduction: Ouabaine is a well-known atrioventricular (AV) node depressant agent, but its effects on functional properties of the AV node have not been cleared. The aim of the present study was to determine how ouabaine administration modifies the rate-dependent properties of the AV node. Methods: Selective stimulation protocols were used to quantify independently electrophysiological prop...

متن کامل

O-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells

Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...

متن کامل

Cellular responses to steroids in the enhancement of Na+ transport by rat collecting duct cells in culture. Differences between glucocorticoid and mineralocorticoid hormones.

It has recently been discovered that both mineralocorticoid (MC) and glucocorticoid (GC) hormones can stimulate electrogenic Na+ absorption by mammalian collecting duct cells in culture. In primary cultures of rat inner medullary collecting duct (IMCD) cells, 24-h incubation with either MC or GC agonist stimulates Na+ transport approximately threefold. We have now determined that the effects we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 73 1  شماره 

صفحات  -

تاریخ انتشار 1984